一.概念描述
现代数学:如果整数a能被自然数b整除,那么a叫作b的倍数,b叫作a的约数(也叫因数);如果整数a不能被自然数b整除,就表示a不是b的倍数,或者b不是a的约数。
小学数学:小学数学教材中一般是这样阐述因数和倍数的概念的。2004年北京版教材第10册的第46页指出:如果数a能被数b整除,a就叫作b的倍数,b就叫作a的约数(也就是因数)。例如,15能被3整除,15是3的倍数,3是15的因数。2013年人教版教材五年级下册第12页指出:2x6=12,2和6是12因数,12是2和6的倍数。
二.概念解读
(1)因数和倍数的表达
因数和倍数表示的是一个数与另一个数的关系,它们是两个相互依存的概念,不能单独存在。在叙述时,一定要说明哪个数是哪个数的因数或倍数,而不能说成某数是因数或倍数。例如对153=5,应说15是3的倍数,3是15的因数;而不能说15是倍数,3是因数。
(2)求一个数的因数的方法
例如,18的因数有哪些?用乘法想:哪两个整数相乘的积是18?18=118,18=29......用除法想:181=18,182=9......
一个数的因数可以从1找起,也就是从最小的因数找起,一直找到它本身(如18的因数有1、2、3、6、9、18),也可以一对一对地找(如18的因数有1和18,2和9,3 和6)。
(3)求一个数的倍数的方法
例如,你能找出多少个2的倍数?从2的1倍找起,接着2的2倍、3倍……也可以这样想:2x1=2,2x2=4,23=6…...
学生会发现,一直这样找下去是找不完的,说明2的倍数有无数个。
(4) 一个数的因数和倍数的特点
一个数的最小的因数是1,最大的因数是它本身,它的因数的个数是有限的。
一个数的最小的倍数是它本身,没有最大的倍数,它的倍数的个数是无限的。
(5)有趣的数
①完全数,又叫完美数。
—个自然数的所有真因数之和等于它本身,这样的自然数叫完全数。
真因数即除了本身以外的所有正因数。例如,6的因数有:1、2、3、6。除去它本身6之外,剩下的1、2、3这三个因数都是6的真因数。把这三个真因数加起来---1+2+3=6,它们的和正好等于它本身,所以6就是一个完全数。
再如28,把它所有的真因数加起来---1+2+4+7+14= 28,它们的和也正好等于它本身,所以28也是一个完全数。