关于数论中的因数与倍数,以及公因数与公倍数等概念,在小学数学领域属于基础且重要的知识点。尽管在近两年的河北省小升初试卷中,这类题目并不多见,仅出现三道题目左右,但它们在其它知识点中会经常被涉及到。
一、概念阐述:
在数学中,若两数a与b(且a、b不为0的自然数)相乘得到c,那么c就是a和b的倍数,而a和b则是c的因数。一个数最小的因数是1,而它最大的因数是它自身。
关于公因数与最大公因数:
几个数共有的因数,我们称之为这几个数的公因数。而在这几个公因数中,最大的那一个就是它们的最大公因数。例如,a和b的最大公因数是n,我们可以记作(a,b)=n。
互质数的定义:
当两个数的公因数只有1时,我们称这两个数为互质数。值得注意的是,1和任何自然数(除了0)都是互质的。
关于公倍数与最小公倍数:
一个数能被几个数整除,那么这个数就是这几个数的公倍数。而在这些公倍数中,最小的那个被称为最小公倍数。比如,a和b的最小公倍数记作[a,b],其值为m。
二、求取方法:
1. 短除法:
- 用于求最大公因数:将两数并排短除公因数,直至两数互质,然后将左边除过的数相乘。
- 用于求最小公倍数:操作方式同上,但需将左边除过的数及下边剩余的数相乘。
2. 分解质因数法:
- 求最大公约数时,需取分解后共有的质因数的最低次方相乘。
- 求最小公倍数时,则是取每种质因数的最高次方相乘。
三、例题解析:
以下通过几个例题来加深理解。
2. 墨莫和小高分别写了两个自然数,已知最大公约数是42,最小公倍数是168。求两数之和?【解题步骤】……(同上)
3. 学校准备慰问退休老职工,买了320个苹果、240个桔子、200个香蕉。问最多可以分成多少份同样的礼物?每份中各水果数量如何?【解题步骤】……(此处得出可以分成40份礼物,每份中苹果、桔子、香蕉的数量分别为8、6、5个)
4. 两个不同质数的积的约数有多少个?【答案】有4个约数:分别是1、乘积本身以及两个质数。